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Abstract

Acupuncture (AP) has been used worldwide to relieve pain. However, the mechanism of action of AP is poorly
understood. Here, we found that AP relieved neuropathic pain (NP) by inhibiting Jun-N-terminal kinase (JNK)
activation in astrocytes after spinal cord injury (SCI). After contusion injury which induces the below-level (L4-L5) NP,
Shuigou (GV26) and Yanglingquan (GB34) acupoints were applied. At 31 d after injury, both mechanical allodynia
and thermal hyperalgesia were significantly alleviated by AP applied at GV26 and GB34. Immunocytochemistry
revealed that JNK activation was mainly observed in astrocytes after injury. AP inhibited JNK activation in astrocytes
at L4-L5 level of spinal cord. The level of p-c-Jun known, a downstream molecule of JNK, was also decreased by AP.
In addition, SCI-induced GFAP expression, a marker for astrocytes, was decreased by AP as compared to control
groups. Especially, the number of hypertrophic, activated astrocytes in laminae I–II of dorsal horn at L4-5 was
markedly decreased by AP treatment when compared with vehicle and simulated AP-treated groups. When animals
treated with SP600125, a specific JNK inhibitor, after SCI, both mechanical allodynia and thermal hyperalgesia were
significantly attenuated by the inhibitor, suggesting that JNK activation is likely involved in SCI-induced NP. Also, the
expression of chemokines which is known to be mediated through JNK pathway was significantly decreased by AP
and SP600125 treatment. Therefore, our results indicate that analgesic effect of AP is mediated in part by inhibiting
JNK activation in astrocytes after SCI.
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Introduction

Neuropathic pain (NP) is one of the pathological pains which
are caused primarily by damage of the peripheral or central
nervous system (CNS) [1]. NP includes spontaneous burning
pain or stimulus-evoked pain which is represented by
hyperalgesia evoked by noxious stimuli and allodynia evoked
by a non-noxious stimuli [2]. A majority of spinal cord injury
(SCI) patients are known to experience central NP. SCI-
induced NP can be localized above-, at-, and below-levels as
rostral, same and caudal position from the injury site [3–5].
However, currently available treatments for the SCI-induced
NP are only partially effective, and additional therapeutic
development for this NP is hindered by our incomplete
understanding of how neuropathic pain is induced and
maintained.

Increasing evidences show that after SCI, mitogen activated
protein kinase (MAPK) including p38MAPK, extracellular
signal-regulated kinase (ERK) and c-Jun N-terminal kinase
(JNK) are activated in glial cells and play a pivotal role in the
induction and maintenance of central and peripheral NP [6–11].
For example, both peripheral nerve injury and SCI induce
p38MAPK and ERK activation in microglia in the spinal cord
[6–8,12,13]. Our recent report also shows that an intrathecal
injection of p38MAPK inhibitor (SB203580) or ERK inhibitor
(PD98059) after SCI attenuates mechanical allodynia and
hyperalgesia [14]. Furthermore, PGE2 produced via ERK-
dependent signaling in activated microglia mediates SCI-
induced NP through EP2, PGE2 receptor, expressed in spinal
cord neurons [8].

It has been shown that JNK is persistently activated in
astrocytes in the spinal cord after pheripheral nerve injury
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[9,15–17]. Administration of JNK inhibitors such as SP600125
and D-JNKI-1 also alleviates sciatic nerve ligation (SNL)-
induced NP [9,18]. Recent evidence also shows that JNK
induces expression of CCL2/MCP-1 (monocyte
chemoattractant protein-1) chemokine in spinal cord
astrocytes, which contributes to central sensitization and NP
facilitation by enhancing excitatory synaptic transmission [16].
Although JNK activation after SCI has been known to be
involved in apoptotic neuronal cell death and axonal
degeneration, leading to limiting motor recovery after SCI
[19–22], the role of JNK activation in the development or
maintenance of chronic NP after injury has not been examined
yet.

Acupuncture (AP) is known to relieve peripheral NP as well
as acute or chronic inflammatory pain via inhibition of microglial
activation and production of inflammatory mediators in animal
models [23–25]. In clinical trials, AP is also shown to relieve
chronic lower back, arthritic pain [23,26], and NP following the
CNS injuries including SCI [27,28]. However, the precise
mechanism of action of AP on NP is not fully understood. In
this regard, our recent study [14] shows that AP relieves SCI-
induced NP at below-level by inhibiting reactive oxygen species
(ROS)-induced p38MAPK and ERK activation in microglia.
Since JNK activation is known to be involved in pheripheral
nerve injury-induced NP [9], we tested a hypothesis that AP
would relieve NP by influencing JNK signaling after SCI. We
found that AP relieved the below level NP by inhibiting JNK
activation in astrocytes after injury.

Materials and Methods

Ethics Statement
All surgical interventions and postoperative animal care were

approved by the Animal Care Committee of the Kyung Hee
University.

Spinal cord injury
Adult rats [Sprague Dawley, male, 250-300 g; Sam: TacN

(SD) BR; Samtako, Osan, Korea] were maintained under a
constant temperature (23 ± 1 °C) and humidity (60 ± 10%)
under a 12 h light/ dark cycle (light on 07:30–19:30 h) with ad
libitum access to drinking water and food. Prior to surgery, rats
were weighed and anesthetized with chloral hydrate (500
mg/kg intraperitoneal injection). An adequate level of
anesthesia was determined by monitoring the corneal and
hindlimb withdrawal reflexes. The back and neck regions were
then shaved and laminectomy was performed at the T9-T10
level, exposing the cord beneath without disrupting the dura.
The spinous processes of T8 and T11 were then clamped to
stabilize the spine, and the exposed dorsal surface of the cord
was subjected to moderate contusion injury (10 g x 25 mm)
using a New York University (NYU) impactor as described
previously [29]. For the sham-operated controls, the animals
underwent a T9-T10 laminectomy without weight-drop injury.
Throughout the surgical procedure, body temperature was
maintained at 37 ± 0.5 °C with a heating pad (Biomed S.L.,
Alicante, Spain). After the injury the muscles and skin were
closed in layers, and the rats were placed in a temperature and

humidity-controlled chamber overnight. Postoperatively, rats
were received subcutaneously supplemental fluids (5 ml,
lactated ringer) and antibiotics (gentamicin, 5 mg/kg
intramuscular injection) once daily for 5 d after surgery. The
rats were housed one per cage after injury with water and food
easily accessible. Body weights and the remaining chow and
water weight were recorded each morning for all animals. The
bladder was emptied manually three times per day until
reflexive bladder emptying was established.

Acupuncture treatment
To establish homogenous experimental groups, first, we

selected those animals with 9-10 BBB scores at 28 d after SCI
(similar motor function improvement). Second, we selected
only animals that chronic neuropathic pain was developed
(mechanical allodyna, PWT; 1.5-3 g and heat sensitivity, PWL;
5.5-6.5 s), and then selected rats were divided randomly into
each experimental group including vehicle, AP and simulated
AP (control) treatments. More than 80% of rats were in these
criteria and rats not satisfying these criteria were excluded.
Since our recent report showed that AP applied at both
Shuigou (GV26) and Yanglingquan (GB34) acupoints
simultaneously exerts an analgesic effect against SCI-induced
NP at below level [14], AP was applied at both GV26 and GB34
without anesthesia (Figure 1d) using an immobilization
apparatus designed by our laboratory (Figure S1) [14,30].
GB34 is located at the point of intersection of lines from the
anterior border to the head of the fibula, and GV26, located at
the mid points between base of the columnar nasi and the
upper lip, on the facial midline [31] (Figure 1A). Stainless-steel
AP needles of 0.20 mm in diameter were inserted to a depth of
4-6 mm at each acupoint bilaterally, turned at a rate of two
spins per second for 30 s, and then the needles were retained
for 30 min. AP treatment was applied at POD 31 and pain
behavioral tests were performed at 1 h to 4 h after AP
treatment. We used rats received injury without any AP
treatment as a vehicle control. For another control experiment,
a simulated AP treatment with a toothpick at each acupoint was
also performed as described [14,30,32]. In brief, the skin of
each specific acupoint was tapped with the tip of a toothpick to
imitate an AP needle insertion. The acupiont was then gently
touched with the tip of a toothpick, and the toothpick was
turned at a rate of two spins per second for 30 s. After 30
minutes, to simulate withdrawal of the needle, a toothpick
momentarily touched the skin of the acupoint and was then
quickly pulled away [14,30,32].

Pain behavioral tests
All pain behavioral testing was performed by trained

investigators who were blind as to the experimental conditions
and began at postoperative days (POD) 28 to confirm
behavioral signs of SCI-induced chronic NP before AP or drug
treatment as our previous report [14]. For all experiments, we
used only animals that chronic NP following SCI was
developed. At POD 28, hindlimb locomotion of injured animals
were recovered well enough to yield reliable withdrawal reflex
measures as described previously [14,33].
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Mechanical allodynia was assessed by the paw withdrawal
threshold (PWT) in response to probing with a series of
calibrated von Frey filaments (3.92, 5.88, 9.80, 19.60, 39.20,
58.80, 78.40 and 147.00 mN, Stoelting, Wood Dale, IL;
equivalent in grams to 0.4, 0.6, 1.0, 2.0, 4.0, 6.0, 8.0 and 15.0)
as our previous report [14]. The 50% withdrawal threshold was
determined by using the up-down method [34]. In brief, rats
were placed under transparent plastic boxes (28 X 10 X 10 cm)
on a metal mesh floor (3 X 3 mm mesh). They were then left
alone for at least 20 min of acclimation before sensory testing
began. Testing was initiated with the filament which bending
force was 19.60 mN, in the middle of the series. Von Frey
filament applied to the plantar surface of each hind paw, and
the most sensitive spot of the hind paw was first determined by
probing various areas with the 19.60 mN filament. Stimuli were
applied for 3-4 s to each hind paw while the filament was bent
and were presented at intervals of several seconds. A brisk
hind paw withdrawal to von Frey filament application was
regarded as a positive response.

Heat sensitivity was assessed according to the Hargreaves
method [35] to determine paw withdrawal latency (PWL) in
response to a radiant heat (Model 390, IITC Life Science Inc.
Woodland Hills, CA). A radiant heat source under the glass

table was focused on center of the plantar surface. The heat
intensity was set to produce PWL of approximately 10 s in
normal animals, and the cut-off time was set at 20 s to prevent
tissue damage as in previous reports [36,37]. Three times of
heat stimuli were given for each paw at an interval of 5-10 min.
The mean of PWL for three trials was taken for each paw of
each rat.

Basso-Beattie-Bresnahan (BBB) tests
For testing of hindlimb locomotor function, open-field

locomotion was evaluated by using the 21-point BBB
locomotion scale by trained investigators who were blind as to
the experimental conditions as described [38]. BBB is a 22-
point scale (scores 0–21) that systematically and logically
follows recovery of hindlimb function from a score of 0,
indicative of no observed hindlimb movements, to a score of
21, representative of a normal ambulating rodent.

Drug administration
JNK inhibitor, SP600125 (Merk Calbiochem, Darmstadt,

Germany) were dissolved in normal saline containing 2%
DMSO and SP600125 (5 µg/rat) were administered

Figure 1.  Acupuncture relieves neuropathic pain after SCI.  (a) Hind limb locomotor function as assessed by BBB scores after
SCI. *p < 0.05. (b–c) Pain responses to mechanical stimuli (PWT) and heat stimuli (PWL) after injury (n = 15). Data (a-c) are
presented as mean ± SEM (*p < 0.05 vs sham, df = 1, repeated measures ANOVA) (d) Schematic diagram showing acupoints
applied to SCI animals. Acupuncture was applied at two specific acupoints, Shuigou (GV26) and Yanglingquan (GB34), throughout
experiments. (e) There was no significant difference in BBB scores in all groups (n = 8). AP treatment significantly reduced
mechanical allodynia (f) and heat hyperalgesia (g) when compared with those in the vehicle (Veh) or simulated AP (Sim) control
after injury (n = 8). Note that simulated AP had no significant effect on pain relief. Data (e-g) are presented as mean ± SEM (*p <
0.05, **p < 0.01 vs Pre (before treatment); unpaired Student’s t test).
doi: 10.1371/journal.pone.0073948.g001
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intrathecally with 5 µl on POD 31. Since our preliminary study
showed that a dose of 5 µg of SP600125 was optimal dose for
analgesic effect in SCI-induced NP as reported [9], we used 5
µg/rat of SP600125 throughout experiments. For intrathecal
injection, we used direct lumbar puncture as previously
described [14,39,40]. In brief, experimental animals were
anesthetized with 4% isoflurane in a mixture of O2 gas. The
needle is inserted into the tissue to one side of the L5 or L6
spinous process so that it slips into the groove between the
spinous and transverse processes. The tip of the needle is
inserted so that approx. 0.5 cm is within the vertebral column.
Identification of the needle in the intrathecal space was based
on the presence of a sudden lateral tail movement that
occurred after penetration of the ligamentum flavum. Once the
needle was in the intrathecal space, a dose of drug was
injected slowly for 10 s. As a vehicle control, normal saline
containing 2% DMSO was injected during the same time points
in separate injured animals.

Tissue preparation
At POD 31, one hour after the treatment with AP, simulated

AP, SP600125 or vehicle, rats were anesthetized with chloral
hydrate (500 mg/kg) and perfused via cardiac puncture initially
with 0.1 M phosphate buffered saline (PBS, pH 7.4) and
subsequently with 4% paraformaldehyde in PBS. L4-L5
segments of spinal cord were dissected out, post-fixed by
immersion in the same fixative for 2 h and placed in 30%
sucrose in PBS. The segment was embedded in OCT for
frozen sections as previously described [29], and cross
sections were then cut at 10 µm on a cryostat (CM1850; Leica,
Wetzlar, Germany). For molecular work, animals were perfused
with 0.1 M PBS and segments of spinal cord (L4-L5) were
isolated and frozen at -80°C.

Immunohistochemistry
Tissue sections were incubated in 3% hydrogen peroxide in

PBS for 10 min at room temperature (RT) to inhibit
endogenous peroxidase activity. After washing with Tris-
buffered saline including 0.1% Triton X-100(TBST), the
sections were immersed in 5% normal serum (Vector
Laboratories INC, Burlingame, CA) in TBST for 1 h at RT to
block non-specific binding. They were then incubated with a
rabbit anti-p-JNK (1:100; Cell Signaling Technology, Danvers,
MA) or a rabbit anti-p-c-Jun (1:100; Cell Signaling Technology)
overnight at 4°C, followed by biotinylated secondary antibodies
(Dako, Carpinteria, CA). The ABC method was used to detect
labeled cells using a Vectastain kit (Vector Laboratories INC).
DAB served as the substrate for peroxidase. Some sections
stained for p-JNK and p-c-Jun were double-labeled using
specific antibody for identifying astrocytes (GFAP; 1:10,000;
Millipore, Billerica, MA). For double labeling, FITC or Cy3-
conjugated secondary antibodies (Jackson Immuno Research,
West Grove, PA) were used. Nuclei were also labeled with
DAPI according to the protocol of the manufacturer (Molecular
Probes, Eugene, OR). In all controls, reaction to the substrate
was absent if the primary antibody was omitted or replaced by
a non-immune, control antibody. The immunofluorescent
sections were mounted with Vectashield mounting medium

(Vector). Fluorescence labeled signal was detected by a
fluorescence microscope (Olympus), and capture of images
and measurement of signal co-localization was performed with
MetaMorph.

Western blot
At POD 31, one hour after the treatment with AP, simulated

AP and vehicle, whole lysates from L4-L5 segments of spinal
cord were prepared as previously described [14]. Protein
sample (40 µg) was separated on SDS-PAGE and transferred
to nitrocellulose membrane (Millipore). The membranes were
blocked in 5% nonfat skim milk or 5% bovine serum albumin in
TBST for 1 h at room temperature followed by incubation with
antibodies against p-JNK (1:3,000; Cell Signaling Technology),
JNK (1:3,000; Cell Signaling Technology), p-c-Jun (1:1,000;
Cell Signaling Technology), c-Jun (1:1,000; Santa Cruz
Biotechnology, Santa Cruz, CA), GFAP (1:2,000; Millipore) and
β-Tubulin (1:30,000; Sigma) at 4°C overnight. After washing,
the membranes were incubated with HRP conjugated
secondary antibodies (Jackson Immuno Research) for 1 h and
immunoreactive bands were visualized by chemiluminescence
using Supersignal (Thermo scientific Rockford IL). β-tubulin
was used as an internal control. Relative intensity of each band
to sham on Western blots was measured and analyzed by
AlphaImager software (Alpha Innotech Corporation, San
Leandro, CA). Background in films was subtracted from the
optical density measurements. Experiments were repeated
three times, and the values obtained for the relative intensity
were subjected to statistical analysis.

RNA isolation and RT-PCR
RNA was isolated using TRIZOL Reagent (Invitrogen,

Carlsbad, CA) and 0.5 µg of total RNA was reverse-transcribed
into first strand cDNA using MMLV according to the
manufacturer’s instructions (Invitrogen). For PCR
amplifications, the following reagents were added to 1 µl of first
strand cDNA: 0.5 U taq polymerase (Takara, Kyoto, Japan), 20
mM Tris-HCl, pH 7.9, 100 mM KCl, 1.5 mM MgCl2, 250 µM
dNTP, and 10 pmole of each specific primer. PCR conditions
were as follows: denaturation at 94°C, 30 s, primer annealing
at indicated temperature, 30 s, and amplification at 72°C, 30 s.
PCR was terminated by incubation at 72°C for 7 min. The
primers used for monocyte chemotactic protein-1 (MCP-1),
macrophage inflammatory protein-1β (MIP-1β), MIP-3α and
GAPDH were synthesized by the Genotech (Daejeon, Korea)
and the sequences of the primers are as follows (5'–3'): MCP-1
forward, 5’-TCA GCC AGA TGC AGT TAA CG-3’; reverse, 5’-
GAT CCT CTT GTA GCT CTC CAG C-3’ (94 bp, 61°C for 35
cycles); MIP-1β forward, 5’-TCC CAC TTC CTG CTG TTT CTC
T-3’, reverse, 5’-GAA TAC CAC AGC TGG CTT GGA-3’ (106
bp, 60°C for 30 cycles); MIP-3α forward, 5’- GAC TGC TGC
CTC ACG TAC AC’, CCL-20 reverse, 5’-CGA CTT CAG GTG
AAA GAT GAT AG-3’; (120 bp, 60°C for 35 cycles); GAPDH
forward, 5’- TCC CTC AAG ATT GTC AGC AA-3’; GAPDH,
reverse, 5’- AGA TCC ACA ACG GAT ACA TT-3’ (308 bp,
50°C for 25 cycles). The plateau phase of the PCR reaction
was not reached under these PCR conditions. After
amplification, PCR products were subjected to a 1.5% agarose
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gel electrophoresis and visualized by ethidium bromide
staining. The relative density of bands (relative to sham value)
was analyzed by the AlphaImager software (Alpha Innotech
Corporation). Experiments were repeated three times and the
values obtained for the relative intensity were subjected to
statistical analysis. The gels shown in figures are
representative of results from three separate experiments.

Statistical analysis
All data were collected by experimenters blinded to the

surgery and reagent treatments and statistical analyses were
done by using SPSS 15.0 (SPSS Science, Chicago, IL). In this
study, we primarily decided the size of groups by power
analysis using G*Power 3. Data except behavior tests are
presented as the mean ± SD values and behavioral data are
presented as the mean ± SEM. Comparison in between
experimental groups was evaluated for statistical significance
using unpaired Student’s t test. Multiple comparisons between
groups were performed one-way ANOVA. Some behavioral
scores were analyzed by repeated measures ANOVA.
Dunnett’s case-comparison was used as Post hoc analysis.
Statistical significance was accepted with p < 0.05.

Results

Acupuncture relieves neuropathic pain developed after
SCI

We first examined whether chronic neuropathic pain (NP) is
developed after SCI. The hindlimbs were paralyzed
immediately after injury, and the rats recovered spontaneously
extensive movement of hindlimbs within postoperative days
(POD) 14 (Figure 1a). On responses to innoxious, mechanical
stimuli, injured rats were not responsive in cut-off level to
mechanical stimuli up to POD 7, and thereafter, mechanical
PWT decreased progressively (Figure 1b). On responses to
noxious, thermal stimuli, injured rats showed longer latency on
POD 1 to POD 14 than sham control group and thereafter,
decreased gradually (Figure 1c). Since the motor function is
damaged until 14 d post-spinal cord injury, the higher values of
PWL may be due to the loss of motor function. Then, significant
NP from POD 14 for mechanical pain and POD 21 for thermal
pain began to develop (Figure 1b, c) as reported [14]. By POD
28, animals recovered considerable motor function (BBB: 9.2 ±
0.1). With these scores, the rat is able to plantar placement of
the paw with weight support in stance only or weight supported
dorsal stepping and no plantar stepping. As our previous report
[14], the injured rats displayed mechanical allodynia and
thermal hyperalgesia at POD 28 (SCI group: PWT; 2.1 ± 0.2 g,
PWL; 5.7 ± 0.1 s, vs. sham group: PWT; 15.0 ± 0.0 g; PWL;
10.3 ± 0.4 s). Both PWT and PWL in sham were not
significantly different as compared to normal control (Normal,
PWT: 15.0 ± 0.0 g; PWL: 10.1 ± 0.5 s).

Next, we investigated the analgesic effects of AP on SCI-
induced NP. As shown in Figure 1e, there were no significant
differences in BBB scores in all groups after treatment. AP
treatment significantly alleviated SCI-induced mechanical
allodynia (PWT, 1 h AP: 11.3 ± 1.2 g vs. Pre: 2.1 ± 0.3 g, p <
0.01) (Figure 1f) and heat hyperalgesia (PWL, 1 h AP: 9.5 ± 0.7

s vs. Pre: 6.0 ± 0.5 s, p < 0.05) when compared with pre-
treated value (Pre) (Figure 1g) as reported [14]. By contrast,
simulated AP treatment showed no significant effects on PWT
(2.5 ± 0.6 g) and PWL (5.7 ± 0.5s) as compared to pre-treated
value (PWT, 2.5 ± 0.5 g; PWL, 6.0 ± 0.5 s) (Figure 2f, g). When
we determined whether the restrain might induce stress-related
analgesic effects, both PWT and PWL were not different
between restrain and non-restrain animals as our previous
report (data not shown) [14]. These results indicate that the
restrain condition used in the present study did not influence on
the analgesic effects by AP.

Acupuncture inhibits JNK activation in astrocytes after
SCI

JNK is known to be activated in astrocytes in the spinal cord
after nerve injury [9,17] and to play an important role in NP
sensitization [9,18]. However, the activation profile of JNK in
the spinal cord, particularly in the dorsal horn during SCI-
induced below level pain has not been determined. To examine
the effects of AP on JNK activation in the L4-L5 spinal cords,
Western blot analysis for p-JNK was performed. At 31 days
after SCI, the level of p-JNK markedly increased as compared
to sham control, and AP treatment decreased the level of p-
JNK (Figure 2a). Quantitative analysis showed that AP
significantly decreased the level of p-JNK when compared with
vehicle or simulated AP treated groups (vehicle group: 6.8 ±
0.4; AP group: 2.3 ± 0.26; simulated AP group: 7.0 ± 0.34, p <
0.05) (Figure 2b). Immunocytochemistry revealed that after
SCI, the number of p-JNK-immunoreactive cells was increased,
and the p-JNK-positive cells were mainly observed in the
superficial lamina including lamina I–II of the L4-L5 spinal
dorsal horn (Figure 2c, Veh), while a very low p-JNK
immunoreactivity was observed in sham control (data not
shown). It is known that the laminae I–II layers of the spinal
dorsal horn where the majority of unmyelinated Aδ and C fibers
are involved in nociceptive signal processing and large-
myelinated Aβ fibers terminated (shown dotted areas in Figure
2c). The p-JNK immunoreactivity in the superficial lamina was
markedly reduced in AP-treated groups when compared with
the vehicle or simulated AP-treated group (Figure 2c).
Furthermore, double labeling showed that many p-JNK-positive
cells were positive for GFAP, suggesting that p-JNK is
expressed mainly in astrocytes (Figure 2d). Also, a small
number of neurons were positive for p-JNK, but p-JNK-positive
microglia were not observed (data not shown). Thus, these
data suggested that AP may inhibit JNK activation primarily in
astrocytes in the L4-L5 spinal dorsal horn after SCI.

Acupuncture inhibits c-Jun activation after SCI
The transcription factor, c-Jun, is a well-known as a

substrate for JNK [41]. It has been shown that sciatic nerve
ligation (SNL) induces c-Jun phosphorylation in astrocytes in
the spinal cord, which is suppressed by a JNK inhibitor [9].
Therefore, we postulated that AP would inhibit c-Jun
phosphorylation after SCI. Western blotting using an antibody
against p-c-Jun was performed on total extracts from L4-L5
lumbar spinal cord treated with AP, simulated AP and vehicle.
On post-operated day (POD) 31, the level of p-c-Jun was
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markedly increased as compared to sham control (Figure 3a).
In addition, the level of p-c-Jun was significantly reduced in the
AP-treated group when compared with vehicle control (vehicle
group: 8.5 ± 0.6; AP group: 2.8 ± 0.6, p < 0.05) (Figure 3a, b).
However, simulated AP treatment showed no effect on the
level of p-c-Jun (simulated AP group: 8.3 ± 0.8) (Figure 3a, b).
Immunohistochemistry also revealed that the intensity of p-c-
Jun immunoreactivity increased markedly in the L4-L5 spinal
dorsal horn after SCI (Figure 3c, Veh), while no
immunoreactivity of p-c-Jun was observed in sham control
(Figure 3c, Sham). Dotted lined areas indicate higher power
views of the laminae I and II as shown in the left drawing figure.
Also, there was a little change in the intensity of p-c-Jun
immunoreactivity in other areas (minus dorsal horn) of L4-L5
spinal cord in vehicle-treated group as compared to
acupuncture-treated group after injury (Figure 3c). AP
treatment decreased the intensity of p-c-Jun immunoreactivity
in the lamina I and II when compared with the vehicle or
simulated AP-treated group (Figure 3c). Furthermore, double
labeling showed that p-c-Jun-positive cells were mostly
expressed in GFAP-positive astrocytes (arrows) in the dorsal
horn area (Figure 3d), while few p-c-Jun-positive neurons and
microglia were also observed (data not shown). Thus, these
data indicate that AP inhibited c-Jun phosphorylation in
astrocyte in the L4-L5 spinal dorsal horn after SCI.

Acupuncture inhibits SCI-induced activation of
astrocyte in the spinal cord dorsal horn

Activation of astrocytes in the spinal dorsal horn after nerve
injury and spinal hemisection has been implicated in NP
[9,17,42,43]. Since the increased intensity of GFAP in

astrocytes is well known to be used as a marker for their
activation [44], and AP inhibits JNK activation in astrocytes in
L4-L5 dorsal horn after SCI (Figure 2), we hypothesized that
AP would inhibit astrocyte activation after injury. Therefore, we
performed GFAP immunostaining on L4-L5 spinal cord
sections of animals treated with sham, vehicle, AP, and
simulated AP. After SCI, the intensity of GFAP
immunoreactivity was markedly increased and mostly observed
in superficial lamina including lamina I–II of the L4-L5 spinal
dorsal horn as reported [42] (Figure 4a, Veh), while very low
GFAP immunoreactivity was observed in the sham control
(Figure 4a, Sham). One hour after AP treatments, the intensity
of GFAP immunoreactivity in the dorsal horn was markedly
decreased in AP-treated groups when compared with the
vehicle or simulated AP-treated group (Figure 4a).
Densitometric analysis revealed that fluorescent intensity in
AP-treated group was significantly lower than that in vehicle or
simulated AP control (Figure 4b). Western blotting using an
antibody against GFAP was performed on total extracts from
L4-L5 lumbar spinal cords from sham, vehicle-, AP- and
simulated AP-treated groups on POD 31. Parallel with the
immunohistochemistry, the level of GFAP increased after injury
as compared to sham control and significantly reduced in the
AP-treated group when compared with vehicle control (vehicle
group: 4.3 ± 0.33; AP group: 1.8 ± 0.23, p < 0.05) (Figure 4c,
d). However, simulated AP treatment did not affect the level of
GFAP (simulated AP group: 4.4 ± 0.16) (Figure 4c, d). Thus,
these data indicate that AP inhibited astrocyte activation in the
L4-L5 spinal dorsal horn after SCI.

Figure 2.  Acupuncture inhibits JNK activation after SCI.  At POD 31, 1 h after AP treatment, lumbar (L4-L5) spinal tissues were
isolated and total lysates or frozen tissue sections were prepared as described in the Methods section (n = 4). (a) Western blots of
p-JNK. (b) Quantitative analyses of Western blots show that AP treatment significantly inhibited JNK activation when compared with
that in vehicle or simulated AP control. Data are presented as mean ± SD (*p < 0.05 vs vehicle, df = 3, one-way ANOVA). (c)
Immuohistochemistry of p-JNK. Dotted line indicates p-JNK-positive cells in lamina I and II of dorsal horn following SCI. (d) Double
labeling showed that p-JNK immunoreactivity was co-localized in GFAP-positive astrocytes (arrows). Scale bars, 50 µm.
doi: 10.1371/journal.pone.0073948.g002
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Analgesic effect of acupuncture is mediated through
inhibition of JNK activation in astrocytes after SCI

To determine whether JNK activation would play a role in the
pain sensitization after SCI, SP600125, a specific JNK inhibitor,
was delivered intrathecally into L4/5 spinal cord via direct
lumbar puncture once on POD 31. Administration of SP600125
(5 μg) significantly increased the mechanical PWT and thermal
PWL as compared to vehicle control and peak at 1 h after post-
injection (SP600125 group: PWT; 6.5 ± 1.5 g and PWL; 8.2 ±
0.7 s vs. vehicle group: PWT; 2.3 ± 0.6 g and PWL; 5.8 ± 0.5 s,
p < 0.05) (Figure 5a, b). This result suggested that JNK
activation in the dorsal horn at L4-L5 may mediate SCI-induced
NP at below level. Furthermore, co-treatment with AP and
SP600125 led to more significant increases in mechanical
PWT (SP600125 + AP: 11.4 ± 1.3 g; SP600125 alone: 6.5 ±
1.5 g; AP alone: 8.4 ± 1.1 g, p < 0.05) and PWL (SP600125 +
AP: 9.45 ± 1.2 s; SP600125 alone: 8.2 ± 0.7 s; AP alone: 8.5 ±
0.7 s, p < 0.05) when compared with AP alone or SP600125
alone group (Figure 5a, b). Thus, AP and SP600125 co-
treatment appeared to be additive effects on pain relief. At 1 h
after treatment, SP600125 treatment significantly reduced the
level of p-c-Jun when compared with vehicle control and co-
treatment of SP600125 and AP appeared to be additive effects
on c-Jun phosphorylation (vehicle: 8.1 ± 0.9; AP alone: 2.6 ±
0.4; SP600125 alone: 4.8 ± 0.4; SP600125 + AP: 1.3 ± 0.2, p <
0.05) (Figure 5c, d). These results suggest that the analgesic

effect of AP is likely mediated in part by inhibiting JNK and c-
Jun activation in astrocytes after SCI.

Acupuncture inhibits JNK-dependent MCP-1, MIP-1β,
and MIP-3α expression after SCI

JNK pathway is known to be involved in chemokines
expression such as MIP-1, MIP-1β, and MIP-3α [45–47]. These
chemokines are also known to be produced by activated
astrocytes [48]. Furthermore, recent evidence shows that
MCP-1 chemokine is up-regulated in spinal astrocytes via JNK
pathway after sciatic nerve ligation (SNL) and contributes to NP
development [16]. Therefore, we postulated that chemokines
MCP-1, MIP-1β, and MIP-3α would be expressed JNK-
dependently in lumbar spinal cord after SCI and AP would
inhibit these chemokines expression. RT-PCR analysis
revealed that at the expression of MCP-1, MIP-1β, and MIP-3α
mRNA markedly increased at 31 d after SCI and significantly
decreased by AP or SP600125 (Figure 6a, b) at 1 h after
treatment. Furthermore, simultaneous treatment of AP and
SP600125 more decreased the levels of MIP-1, MIP-1β, and
MIP-3α mRNA expression when compared with AP alone or
SP600125 alone group (Figure 6a, b). These results suggest
that the analgesic effect of AP may be mediated in part by
inhibiting JNK-dependent MIP-1, MIP-1β, and MIP-3α
expression after injury.

Figure 3.  Acupuncture decreases the level of p-c-Jun after SCI.  At 1 h after AP treatment, lumbar (L4-L5) spinal tissues were
prepared and assessed by Western blot and immunohistochemistry (n = 4). (a) Western blots of p-c-Jun. (b) Quantitative analysis of
Western blots showed that AP treatment significantly inhibited the level of p-c-Jun when compared with that in vehicle or simulated
AP control. Data are presented as mean ± SD (*p < 0.05 vs vehicle, df = 3, one-way ANOVA). (c) Immunohistochemistry of p-c-Jun
immunoreactvity in the lamina I and II. (d) Double labeling showed that p-c-Jun immunoreactivity was co-localized in GFAP-positive
astrocytes (arrows). Scale bars, 50 µm.
doi: 10.1371/journal.pone.0073948.g003
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Discussion

Our recent study shows that AP inhibits SCI-induced below
level pain by inhibiting ROS production and microglial
activation via inhibition of p38MAPK and ERK activation in
microglia [14]. The present study demonstrated an additional
mechanism of analgesic action of AP after injury. Our results
also showed that JNK was markedly activated in astrocytes at
L4-L5 spinal cord dorsal horn at 31 d after SCI. AP treatment
inhibited the activation of JNK and phosphorylation of c-Jun, a
well-known substrate for JNK. Furthermore, we demonstrated
that JNK activation in spinal astrocytes at delayed time after
SCI appeared to be essential for the sensitization of NP by
demonstrating the inhibitory effect of a specific JNK inhibitor
(SP600125) on mechanical allodynia and heat hyperalgesia.
Furthermore, the expression of chemokines such as MIP-1,
MIP-1β, and MIP-3α, which is known to be involved in injury-
induced NP, was significantly attenuated by AP and the JNK
inhibitor. Taken together, our results thus indicate that the
analgesic effect of AP is likely mediated in part by inhibiting the
activation of JNK/c-Jun pathway in activated astrocytes after
injury.

In the present study, we showed both mechanical allodynia
and thermal hyperalgesia were significantly alleviated by AP
applied at GV26 and GB34 simultaneously. In our previous
report, the two acupoints, GV26 and GB34, were identified as
the most neuroprotective acupoints after injury (total 7 different
acupoints tested). Furthermore, we found that AP applied
simultaneously at GV26 and GB34 acupoints was more
effective than a separate stimulation at each acupoint [30]. In
addition, NP after SCI was also significantly alleviated by
simultaneous AP at GV26 and GB34 by inhibiting microglia
activation [14,28]. Thus, we choose simultaneous AP at GV26
and GB34 in this study, although there was an analgesic effect
of each acupoint.

As a member of the MAPK family, JNK has been known to
play a critical role in intracellular signal transduction. Both
JNK1 and JNK2 are ubiquitously expressed, while JNK3 is
expressed primarily in the nervous system, endocrine
pancreas, and heart [49,50]. After SCI, JNK activation has
been known to induce secondary injury and limits motor
recovery [21,22]. In particular, JNK3 is known to be involved in
oligodendrocytes cell death after SCI [19,20]. However, the role
of JNK activation in SCI-induced NP developed at delayed time
after injury has not been examined. Our results showed that

Figure 4.  Acupuncture inhibits astrocyte activation after SCI.  At 1 h after AP treatment, lumbar (L4-5) spinal tissues were
isolated (n = 4). (a) Representative photographs of GFAP immunostaining in the dorsal horn (superficial layer) indicated by dotted
lines on POD 31. Scale bars, 50 µm. (b) Densitometric analysis reveals that GFAP-immunoreactivity was dramatically increased in
the dorsal horn of injured spinal cord and AP treatment significantly reduced the GFAP immunoreactivity as compared to vehicle
control. (c) Western blots of GFAP. (d) Quantitative analysis of Western blots showed that AP treatment significantly inhibited GFAP
expression when compared with vehicle control. All data are presented as mean ± SD (*p < 0.05 vs vehicle, df = 3, one-way
ANOVA).
doi: 10.1371/journal.pone.0073948.g004
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the phosphorylation of both JNK1 and JNK2 was highly up-
regulated and mainly observed in astrocytes in L4-L5 on POD
31 after SCI (See Figure 2). However, Zhuang et al. [9] reports
that only phosphorylated JNK1 is increased in astrocytes after
sciatic nerve ligation (SNL) although both JNK1 and JNK2 are
constitutively expressed in the spinal cord. The discrepancy in
different phosphorylation of JNK isoforms may be attributable
to the type of injuries (peripheral versus central nerve injury).

Several studies indicate that microglia also plays a critical
role in SCI-induced NP development [6,8]. However, the role of
astrocytes on NP following CNS injuries such as SCI has not
been fully examined although recent evidence suggests
astrocytes may modulate neuronal hyperexcitability in spinal
hemissection model [42]. Several reports also show that
pheripheral nerve injury such as SNL induces activation of JNK
pathway in astrocytes in the spinal cord [7,9,17,51]. In addition,
administration of a JNK inhibitor suppresses activation of
astrocytes and reduces SNL-induced NP [9,18]. Furthermore,
the role of astrocytes in maintaining NP is further supported by
demonstrating the reversal of mechanical allodynia after
intrathecal infusion of L-α-AA, a cytotoxin specific for astrocytes
[9]. Treatment with propentofylline, a methylxanthine derivative,
attenuates mechanical allodynia and thermal hyperalgesia by
inhibiting astrocytes activation in spinal cord dorsal horn after

spinal hemisection injury [42]. Our study demonstrated that the
levels of p-JNK and p-c-Jun were increased at POD31 and
most p-JNK-positive and p-c-Jun-positive astrocytes were
observed in the lumbar dorsal horn (see Figures 2, 3). In
addition, astrocytes activation was significantly inhibited by AP
treatment (see Figure 4). Furthermore, SCI-induced
mechanical allodynia and thermal hyperalgesia were inhibited
by SP600125, a specific JNK inhibitor, treatment (see Figure
5). Our results thus showed that JNK/c-Jun pathway in
astrocytes plays an important role in pain development after
SCI. To our knowledge this is the first study demonstrating the
role of spinal astrocytes in CNS injury-induced chronic NP.

It is known that spinal glial cells enhance and maintain NP by
releasing potent neuromodulators, such as pro-inflammatory
cytokines and chemokines [52]. While the role of pro-
inflammatory cytokines such as TNF-α, IL-1β, and IL-6 in NP
sensitization has been reported [53–57], a very little information
is currently available regarding the role of chemokines in NP
development and/or maintenance. Various chemokines are
known to be produced by activated astrocytes [48]. In addition,
recent evidence indicates that JNK pathway is involved in the
production of chemokines such as MIP-1, MIP-1β, and MIP-3α.
For example, treatment with a JNK inhibitor inhibits production
of CCL-2 (MCP-1) and CCL-4 (MIP-1β) in IL-1β- or TNF-α-

Figure 5.  Intrathecal administration of JNK inhibitor inhibits neuropathic pain.  SP600125 (5 µg/rat), a specific JNK inhibitor,
was injected intrathecally (5 µl) at POD 31 as described in the Methods section (n = 7). SP600125 treatment significantly relieved
SCI-induced mechanical allodynia (a) and heat hyperalgesia (b) when compared with those in vehicle control. Data (a-b) are
presented as mean ± SEM (*p < 0.05, df = 3, repeated measures ANOVA). (c) Western blots of p-c-Jun at 1 h after treatment of AP
or SP600125 (n = 4). (d) Quantitative analysis of Western blots showed that SP600125 treatment significantly decreased the level
of p-c-Jun when compared with vehicle control. All data are presented as mean ± SD (*p < 0.05, **p < 0.01 vs vehicle, df = 4, one-
way ANOVA).
doi: 10.1371/journal.pone.0073948.g005
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stimulated trimester decidual cells [47]. JNK pathway is also
involved in CCL-20 production in keratinocytes and

Figure 6.  Acupuncture inhibits the expression of JNK-
dependent chemokines after SCI.  At 1 h after treatment with
AP or SP600125 (5 µg/rat) at POD 31, total RNA from spinal
cords were prepared as described in the Methods section (n =
4). (a) RT-PCR of MCP-1, MIP-1β, and MIP-3α mRNA after
injury. (b) Quantitative analysis of RT-PCR showed that AP or
SP600125 treatment significantly inhibited the expression of
chemokines when compared with vehicle-treated control. All
data are presented as mean ± SD (*p < 0.05 vs vehicle, df = 4,
one-way ANOVA).
doi: 10.1371/journal.pone.0073948.g006

Rheumatoid arthritis synoviocytes after inflammatory stimuli
[45,46]. Furthermore, MCP-1 is produced by astrocytes via
JNK-mediated pathway after SNL and involved in NP and
central sensitization (hyperactivity of dorsal horn neurons) [16].
Furthermore, our results showed that the expression of MIP-1,
MIP-1β, and MIP-3α were increased in L4-L5 spinal cord after
SCI and inhibited by AP treatment (see Figure 6). We also
showed that treatment with SP600125, a JNK inhibitor,
inhibited the expression of MIP-1, MIP-1β, and MIP-3α (see
Figure 6). Since JNK activation was observed mainly in
astrocytes after SCI (See Figure 2), these results suggest that
the analgesic effect of AP after SCI may be mediated in part by
inhibiting MIP-1, MIP-1β, and MIP-3α production via JNK
signaling in activated astrocytes. However, the role of
chemokines such as MIP-1, MIP-1β, and MIP-3α in SCI-
induced NP were not examined in the present study.

Conclusions

We demonstrated that JNK activation in astrocytes plays a
critical role on chronic NP at below level after SCI. Our results
also showed that AP treatment significantly relieved the below-
level pain following SCI by inhibiting astrocytes activation and
JNK/p-c-Jun pathway in astrocytes at L4-L5 level after injury.
Taken together with our recent report [14], our study
demonstrated that analgesic effects of AP are likely mediated
in part by inhibiting inflammatory responses via inhibition of
MAPKs (p38, ERK, and JNK MAPK) in both activated microglia
and astrocytes after SCI. Furthermore, the present study
suggests an application of AP as an adjunct treatment for
chronic NP in SCI patients.
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